

CS 597: Ph.D. Seminar - fall 2005

A Socio-Technical Foundation for Collaborative Engineering

Professor Stephen Lu, Ph.D.

David Packard Chair in Manufacturing Engineering Director, Product Development Engineering Program Founding Director, the IMPACT Research Laboratory University of Southern California Los Angeles, California USA

Stephen Lu © 2005

Key Points of This Presentation

With globalization, collaborative engineering (CE) is in! What is collaboration, and what is collaborative engineering? CE research needs a new intellectual foundation The determinism versus constructionism philosophy The purely technical versus socio-technical paradigm Group decision is the key challenge of CE research Many types of group decisions A old myth of group decision making A socio-technical foundation (STF) for participative joint decisions in collaborative engineering (CE) Organization behavioral theory to model engineering teams Social construction theory to achieve common understanding Social choice model to rate continuous alternatives Collaborative negotiation to support joint decisions STF/CE posts many challenging CS research questions

What is Collaboration?

Collaboration is a human Activity

- The Cultural and Historical Activity Theory (CHAT)
 - Activity is the basic <u>unit of analysis</u> to study human endeavor
 - Subject, Object, and Community
- Three types of Collaboration Activity
 - Coordination
 - Uni-directional dependencies
 - Cooperation
 - Muti-directional dependencies
 - Co-construction
 - Un-defined dependencies

Level	Oriented Towards	Carried Out by	
Activity Motives (long-term)		Community	
Action	Goals (short-term) Individual (or united group)		
Operation	Conditions Routinized human (or automated machines)		

What is Collaborative Engineering?

Collaborative engineering is

- a socio-technical group decision-making process whereby a team of engineers, who share a common commitment, engage in collaborative activities to:
 - resolve conflicts,
 - bargain for individual or collective advantages,
 - agree upon courses of action,
 - craft joint decisions that serve their mutual interests

Engineering Lifecycle Activities

An Old Myth of Group Decisions

Arrow's theorem of ImPossibility

 Kenneth Arrow proved the intransitivity of individual preferences to a group preference, which led to the traditional myth of group decision making.

Customers express their preferences via ordinal ranking of discrete alternatives

Individual Customer	Preference Rankings
	a > b > c, and a > c
II	b > c > a, and b > a
III	c > a > b, and c > b

Democratic decision making (or social choice) by simple preference aggregations

Customer	Decisions		
(when asked)	avs.b bvs.c cvs.a		
	а	b	а
Π	b	b	С
	а	С	С
Group Result	a > b	b > c	c > a

Stephen Lu © 2005

A Socio-Technical Foundation for Collaborative Engineering

7

Demystify the Old Myth!

If group decisions are indeed irrational, then a true collaborative engineering is impossible

- Iet the leader to make autocratic individual decisions
 - Become multi-objective, multi-attribute decision problems

We challenge this old myth with a new approach

		Old Thinking	New Approach
Collaborative Engineering	Philosophy	Scientific Determinism	Social Constructionism
99	Paradigm	Pure-Technical	Socio-Technical
Group Decision	Style	Autocratic	Participative
Making	Decision	Individual	Joint

Determinism vs. Constructionism

Stephen Lu © 2005

Traditional Technical Paradigm

Stephen Lu © 2005

New Socio-Technical Paradigm

Stephen Lu © 2005

Different Decision Making Styles

The Leader Decides

- . Autocratic or directive style of problem solving
- 2. Autocratic with group information input
- 3. Autocratic with group's review and feedback
- 4. Individual Consultative Style
- 5. Group Consultative Style
- The Group Decides
 - 6. Group Decision Style (based on leader's definition)
 - 7. Participative Style (by all interested stakeholders) Our Focus
 - 8. Leaderless Team

CE research must support the "Group-decide" styles

- Classical decision theory is only good for styles 1 5
- Our research is targeted at styles 6, 7 and 8

Individual vs. Group/Joint Decision

Stephen Lu © 2005

Socio-Technical Paradigm for CE

Stephen Lu © 2005

Alternative Theories and Models

The Nature and the Modeling of:	Current Approach	New Approach	New Paradigm and Procedure:
Team Behavior	Neo-Classical Economic Man in Open Large Groups	Modern Organizational Man in Small Teams with Incentives	(WHO) Interaction
Social Interaction	Self-Interested Rationality with Static Perspective	Social Construction Theory with Dynamic Perspective	(WHAT) Understanding
Group Preference	Ordinal Ranking with Discrete Social Choice Models	Cardinal Rating with Spatial Continuous Social Choice Model	(WHY) Preference
Joint Decision	Classic Decision Analysis, and Game Theoretic Approach	Collaborative Win-win Negotiation Framework and Analysis	(HOW) Decision

Economic vs. Organizational Man

Economic Man (and Rational Man)

- Based on neoclassical economic theory (and decision theory)
 - Economic Man has a complete/consistent system of preferences to choose correctly among entire set of available alternatives
 - all the alternatives of choice are given,
 - all of the consequences of each alternatives are known, and
 - a complete utility ordering for all possible set of consequences

Organizational Man

- Based on modern organization theory (Simon, Cyert, March)
 - While Economic Man optimizes, Organizational Man satisfices to look for a course of action that is satisfactory or good enough
 - choice is always exercised with respect to limited resources, time, information, and approximate model of the real situation, and
 - the elements of alternatives are not given but are the outcome of a psychological and sociological processes, including the choosers' own activities and the activities of others in the choosers' environments

Our research is based on organizational behavior theory

"satisficing" and "bounded rationality"

Social Construction of Reality

- Social construction of reality is an interactive and dynamic process of socially shape an agreement and/or artifact by a group of interested stakeholders
 - Interpretive Flexibility
 - SC (e.g., CE) results are always under-determined
 - Relevant Social Group
 - All members of a social group share the same set of meanings (i.e., interpretations) attached to a specific design
 - Closure and Stabilization
 - The SC process continues until all conflicts are resolved, and the artifact no longer posts a problem to any relevant social group
 - Wider Context
 - Background conditions of social interactions matter
- We use this process to achieve a common understanding among team members
 - Preferences are expressed w.r.t a common understanding

Spatial Social Choice Model

Group preference can be rational and consistent

- Ordinal <u>rankings</u> of discrete alternatives of individual preferences leads to the Arrow's paradox of group decisions
- Ordinal <u>ratings</u> of continuous (spatial) alternatives of individual preferences can result in rational and consistent procedures of aggregating preferences of many to a group preference
- Spatial model of social choice draws on concepts from geometry, real analysis, and topology to describe the set of continuous alternatives of individual preferences
 - Alternatives are drawn from an ordered set, represented by points in a continuum
- Our CE research is based on ratings of continuous alternatives of individual preferences
 - Rating contains richer preference information than ranking
 - It is possible to obtain spatial social choice models (i.e., ratings of continuous alternatives) for most engineering problems

Collaborative Engineering via Negotiation (ECN) with a consistent group preference

- **1.** Individual Analysis: each party thinks alone to decide their respective BATNA organizational behavior theory
- 2. Communal Analysis: two parties get together to establish their initial ZOPA social construction theory
- **3. Mutual Exploration:** both parties jointly explore maximal technical feasibilities social construction theory
- 4. Establish Preference: parties jointly & collaboratively establish a value structure spatial social choice model
- **5. Initial Agreement:** parties locate initial agreements along the Efficient Frontier within the negotiation feasibility region
- 6. Joint Co-construction: parties work together to dynamically and collaboratively modify their previously constructed value structure to improve initial agreements
- 7. Collective Invention: parties collaboratively probe each other's knowledge to expand, or invent, new technical feasibilities for even more improved agreements
- 8. Collaborative Innovation: parties simultaneously perform Steps 6 and 7, which is the ultimate goal of ECN

ECN: a Graphical Example

Stephen Lu © 2005

ECN: Dynamic Control System

21

ECN: Socio-Technical Construction

ECN: Computing the Consensus

Figure 4: Perspective Model Network and Perspective Interaction Matrix

Stephen Lu © 2005

Summary of Research Journey

GOAL	A Socio-Technical Framework for Participative Joint Decision Making in Collaborative Design		
Old	Group decision making is inherently chaotic because it can't be consistent and rational.		
Myth	The autocratic style by a Supra decision maker is the only way for collaborative design.		
Current Approach	Scientific Determinism Neo-Classical Economic Theory Full-Rationality, & Static Perspective Discrete Social Choice Model Decision Analysis		
Basic	Collaborative engineering design is socio-technical group decision making process.		
Proposition	Participative joint decision making by all designers can be consistent and rational.		
New	(An Integrated Socio-Technical <u>Paradigm</u> for Collaborative Design)		
Paradigm	WHO → WHAT → WHY → HOW		
New Approach	Social Constructionism Organization Behavioral Theory Social Construct Theory Spatial Social Choice Model Collaborative Negotiation		
New	Interaction → Understanding → Preference → Decision		
Procedure	(who) (what) (why) (how)		
Research Task	Systematically Model Social InteractionsConsistently Aggregate Group PreferencesCollaboratively Negotiate Joint Decisions		

Stephen Lu © 2005

CS597 Ph.D. Seminar, fall 2005

The BIG Picture – What's for CS?

Supporting Science

Stephen Lu © 2005

Organization by Focus/Foci (CS)

Immersion	Interaction	Autonomy	Computation
Arbib	Boehm	Bekey	Adleman
Cohen	Diniz	Cohen	Arbib
Desbrun	Frank	Gil	Boehm
Hovy	Ghandeharizadeh	Gratch	Goel
Hii	Golubchik	Hill	Horowitz
Knight	Govindan	Johnson	Huang
Marcu	Hall	Kashlask	Itti
Medioni	Heidemann	Lu	Medvidovic
Neumann	Horowitz	Mataric	Port
Nevatia	Kesselman	Medioni	Requicha
Price	Knoblock	Medvidovic	Schaal
Szekely	McLeod	Nevalia	von der Malsburg
von der Malsburg	Medvidovic	Rickel	
	Neches	Rosenbloom	
	Neuman	Schaal	
	Papadopoulos	Shen	
	Port	Sukhatme	
	Requicha	Swartout	
	Shahabi	Tambe	
	Touch		
	Zimmerman		

Stephen Lu © 2005